(P-4)=p^2+3p-5

Simple and best practice solution for (P-4)=p^2+3p-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (P-4)=p^2+3p-5 equation:



(-4)=P^2+3P-5
We move all terms to the left:
(-4)-(P^2+3P-5)=0
We add all the numbers together, and all the variables
-(P^2+3P-5)-4=0
We get rid of parentheses
-P^2-3P+5-4=0
We add all the numbers together, and all the variables
-1P^2-3P+1=0
a = -1; b = -3; c = +1;
Δ = b2-4ac
Δ = -32-4·(-1)·1
Δ = 13
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{13}}{2*-1}=\frac{3-\sqrt{13}}{-2} $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{13}}{2*-1}=\frac{3+\sqrt{13}}{-2} $

See similar equations:

| 2x-5+33x+8=18 | | 17y=11 | | -(9w+6)=3(7+7+6w | | (3b+5)=(b-7) | | 3x+(12/5)=49 | | 0=3q^2-7q+2 | | 3x-3=81 | | 5x+5=-72-6 | | 5-2(x+1)=10 | | 2x+2x+3=4x-2-1 | | -(2x+5)=4(1-3x)+10x-9 | | v/4-14=15 | | 1=-16t^2+30t | | 2z/7+6=1 | | 3x+3=9+10x-2-7x | | −7(z−30)=42 | | 1/2(4x-12)=-6+x+12+x | | -20+x/3=-32 | | 12r-8r=-52 | | -2(x-1)=-2+5 | | x/5-10=1/10(2x-100) | | -12t^2+480t+30=3000 | | 3p-9p=30 | | -30=j=+50 | | 2x+ç=x+1 | | 0.25(x+6)=33/4 | | 5(x-3)=-14+5x | | (x+4)^5=0 | | 5(x+1)-5=3x-(-2x) | | 9(n+56)=-54 | | 5(x+1)-5=3x-(2x) | | 5x-7+14=0 |

Equations solver categories